

ASX Announcement

3 November 2021

CHULITNA PROJECT SAMPLING RESULTS UP TO 73.9g/t Au & 1500g/t Ag

HIGHLIGHTS

- Maiden exploration program at Chulitna Project conducted with 253 samples collected – analysis results up to 73.9g/t Au, 1500g/t Ag & 21.1% Cu
- Exploration works identified surface mineralisation at Partin Creek prospect and surrounding areas
- The Chulitna Project comprises 199km² of granted mining claims containing multiple prospect targets for varying commodities, including gold, silver, tin, copper & base metals

Discovery Africa Limited (ASX: DAF - "Discovery Africa" or "Company") is pleased to advise the laboratory analysis results of the initial fieldwork rock sampling program at the Chulitna Project in Alaska, USA.

The Company engaged an experienced and well-credentialed Alaskan professional geological consulting services group to conduct and manage the field exploration program, which comprised the collection of 253 samples (167 rock samples and 86 talus fines samples) and geological mapping works at targeted prospect sites within the project area.

The main exploration program objective was to duplicate the known gold occurrences at the Partin Creek prospect and expand to the northeast and southwest, to target a robust and coherent gold system with considerable strike length.

A total of 167 rock samples were analysed, with results achieved up to 73.9g/t Au, 1500g/t Ag and 21.1% Cu. Other significant rock sample analysis results include 30g/t Au, 28.7g/t Au, 477g/t Ag, 414g/t Ag, 2.63% Cu and 2.62% Cu. The rock sample analysis results with >5g/t Au are shown below.

A total of 85 talus fines samples (collected along the base of steep cliffs) were analysed (one sample was lost in transit to the laboratory), with results achieved up to 7.18g/t Au and 12.25g/t Ag.

The Company is encouraged by the exploration sampling results achieved at the Partin Creek prospect during this phase of work, and will now prepare next stage follow up works with the aim to identify priority sites for subsequent potential drilling works.

The Company will continue to review and assess the historical exploration works and results from other priority prospects within the project area.

Discovery Africa Limited ACN 147 324 847 ABN 50 147 324 847 18 Sangiorgio Court, Osborne Park WA 6017 Locked Bag 4, Osborne Park DC WA 6916 Ph: (08) 6165 4000 Fax: (08) 6165 4067 Website www.discoveryafrica.com.au

discovery africa

Sample_ID	UTM_E	UTM_N	Elev (m)	Sample_Type	Unit	Au_g/t	Ag_g/t	Cu_ppm
D397665	349375.1	6996307.8	1215	Outcrop-chip	Skarn	73.9	26.7	2750
D397515	349877.3	6996013.1	1354	Outcrop-select	Vein	30.9	1500	13650
D397528	350079.5	6996817.2	1505	Outcrop-select	Vein	28.7	304	26200
D397518	350052.5	6996132.8	1514	Float-Select	Vein	22.9	95.3	3500
D397564	350318.3	6996337.6	1631	Subcrop select	Vein	22.4	123	8570
D397582	350321.9	6996324.6	1623	Subcrop -select	Vein	20.2	477	14900
D397566	350293.6	6996299.2	1628	Subcrop-Select	Vein	20.1	384	14700
D397563	350345.0	6996362.9	1638	Float-select	Vein	17.65	44.2	2930
D397526	350083.1	6996816.6	1508	Outcrop-chip	Vein	17.1	39.9	17050
D397567	350255.6	6996250.7	1622	Subcrop-Select	Vein	16.75	38.7	15850
D397527	350081.4	6996818.7	1507	Outcrop-chip	Skarn	12	30	13100
D397613	349731.0	6996501.0	1445	Outcrop-chip	Skarn	11.85	99	26300
D397644	349777.0	6996434.7	1431	Outcrop-chip	Vein	11.55	96.7	10600
D397517	350068.5	6996131.3	1514	Subcrop-Select	Vein	11.15	21.5	831
D397512	349884.3	6996225.7	1398	Outcrop-select	Vein	11	77.2	3470
D397525	350081.4	6996826.6	1506	Outcrop-chip	Vein	10.05	69.5	4540
D397593	350185.8	6996158.8	1578	Subcrop-select	Vein	9.71	139	3640
D397642	349759.1	6996447.6	1440	Outcrop-chip	Vein	9.01	67.2	5110
D397529	350077.2	6996815.2	1503	Outcrop-chip	Skarn	8.99	12.35	14000
D397568	350251.8	6996249.5	1621	Subcrop-Select	Vein	8.61	25.6	737
D397595	350153.5	6996092.3	1540	Float-select	Vein	8.59	190	7540
D397636	349762.6	6996461.0	1441	Outcrop-chip	Vein	8.16	75.4	4570
D397597	350174.0	6996050.4	1518	Outcrop-select	Vein	7.99	78.2	897
D397588	350145.1	6996166.1	1581	Float-select	Vein	7.9	262	7620
D397519	350051.2	6996113.9	1510	Subcrop-Select	Vein	7.17	16.75	1035
D397645	349777.5	6996434.7	1431	Outcrop-chip	Skarn	7.01	60.4	8490
D397666	349344.8	6996295.4	1197	Outcrop-chip	Vein	6.86	244	12900
D397514	349883.1	6996015.9	1353	Outcrop-select	Vein	6.82	414	8430
D397652	350071.1	6996583.6	1617	Subcrop	Vein	6.02	344	9170
D397598	350202.0	6996069.5	1500	Float-select	Vein	5.59	25.3	3620
D397586	350155.1	6996168.4	1586	Subcrop-Select	Vein	5.55	49.7	7510
D397569	350233.4	6996235.0	1615	Subcrop-select	Vein	5.34	13.5	226
D397583	350305.5	6996291.8	1615	Outcrop-chip	Basalt	5.17	5.96	720
D397634	349763.5	6996460.1	1441	Outcrop-chip	Vein	5.16	344	12200

Table 1. Chulitna Project - Rock Sample Analysis Results (with >5g/t Au)

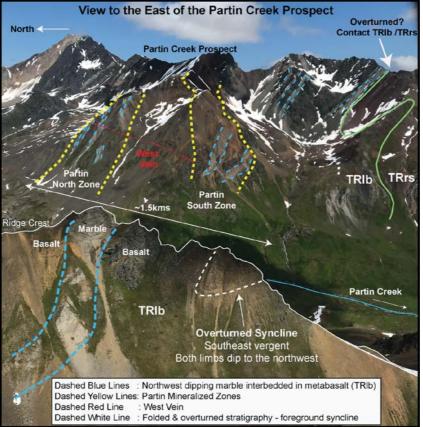


Figure 1. Chulitna Project - Partin Creek Prospect Overview

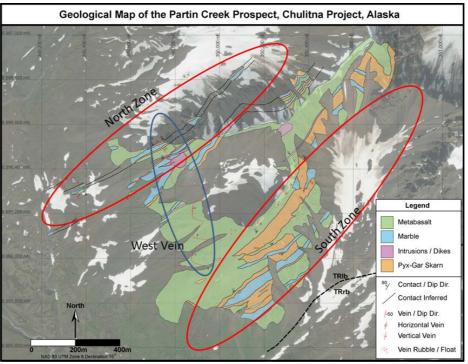
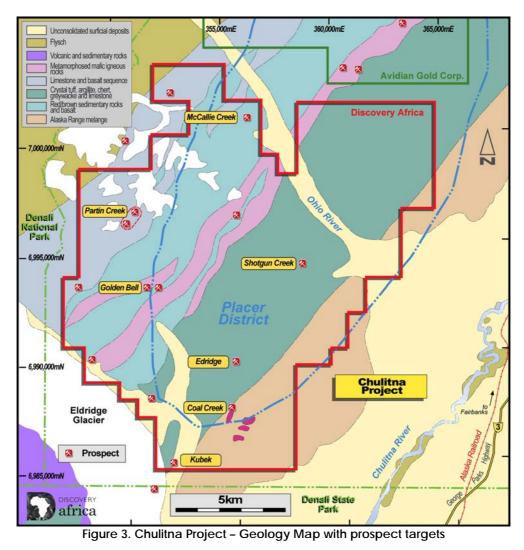


Figure 2. Chulitna Project - Partin Creek Prospect Geology

Discovery Africa Limited ACN 147 324 847 ABN 50 147 324 847 18 Sangiorgio Court, Osborne Park WA 6017 Locked Bag 4, Osborne Park DC WA 6916 Ph: (08) 6165 4000 Fax: (08) 6165 4067 Website www.discoveryafrica.com.au



Project Background

The Company's 100% owned Chulitna Project area comprises 199.4km², is located on State of Alaska public lands, and is not subject to any Native Title claims, native lands, or native claimant groups. The project lies approximately 250km north of Anchorage and close to the major Parks Highway, which runs mostly parallel to the State owned Alaska railroad.

The project hosts numerous prospect areas identified from historical works, which are prospective for gold, silver, copper, tin and base metals. The two main prospect areas currently identified within the project area are Partin Creek (gold, silver, copper) and Coal Creek (tin, silver).

In addition, the Company will continue reviewing additional mineral project opportunities, to enhance its project portfolio and increase its overall value proposition. The Company is working to ensure it is best placed to deliver value and upside potential for all its shareholders.

Discovery Africa Limited

ACN 147 324 847 ABN 50 147 324 847 18 Sangiorgio Court, Osborne Park WA 6017 Locked Bag 4, Osborne Park DC WA 6916 Ph: (08) 6165 4000 Fax: (08) 6165 4067 Website www.discoveryafrica.com.au

Appendix A:

The following information is provided to ensure compliance with the JORC Code (2012) and ASX Listing Rule 5.7 requirements for the reporting of Exploration Results for the Chulitna Project. Please also refer to JORC Table 1 below.

Refer to Figure 1 and 2 for site localities in figures below.

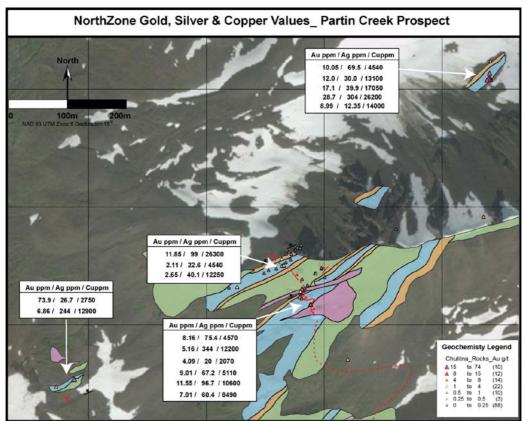


Figure 4. Chulitna Project - Partin Creek (North Zone) Prospect Sample Location Map

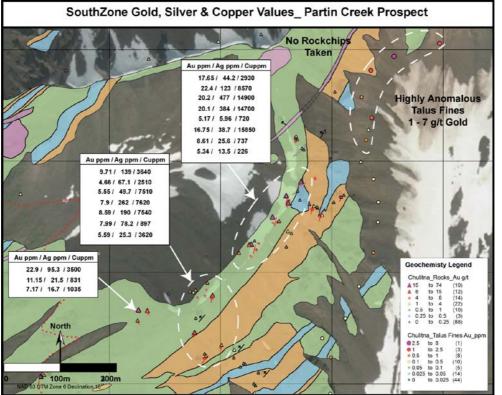
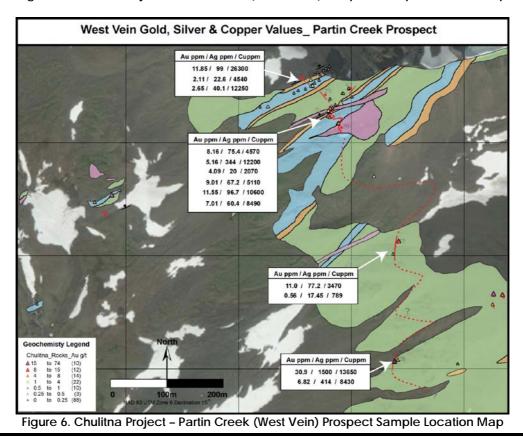



Figure 5. Chulitna Project - Partin Creek (South Zone) Prospect Sample Location Map

Discovery Africa Limited

ACN 147 324 847 ABN 50 147 324 847 18 Sangiorgio Court, Osborne Park WA 6017 Locked Bag 4, Osborne Park DC WA 6916 Ph: (08) 6165 4000 Fax: (08) 6165 4067 Website www.discoveryafrica.com.au

Prospect	Sample_ID	UTM_E	UTM_N	Elev (m)	Sample_Type	Structure	Strike	Dip	Dip Dir	Unit	Au_tot_ppm	Ag_tot_ppm	Cu_ppm
Partin	D397501	350235.6	6996030.7	1467.64	Outcrop-chip					Skarn	0.036	0.62	1300
Partin	D397502	350241.6	6996036.9	1470.70	Outcrop-select					Skarn	0.039	2.94	2810
Partin	D397503	350244.3	6996035.9	1467.63	Subcrop-Select					Skarn	0.006	0.57	638
Partin	D397504	350268.0	6996020.2	1455.85	Subcrop		207	66	NW	Skarn	0.047	6.85	2280
Partin	D397505	350263.0	6995997.1	1430.29	Outcrop-select					Skarn	0.075	0.08	363
Partin	D397506	350260.2	6996000.3	1429.08	Outcrop-chip					Skarn	0.009	0.42	877
Partin	D397507	350261.5	6995983.4	1418.08	Subcrop-Select					Skarn	2.36	7.05	5720
Partin	D397508	350226.4	6995936.3	1420.75	Outcrop-chip					Skarn	0.068	0.96	1400
Partin	D397509	350405.8	6996524.0	1612.67	Outcrop-select		215	78	NW	Contact	0.188	6.46	4390
Partin	D397510	350387.2	6996452.6	1598.83	Outcrop-Chip		220	80	NW	Contact	0.027	1.62	11950
Partin	D397511	349874.5	6996203.4	1391.90	Subcrop-Select					Vein	0.561	17.45	789
Partin	D397512	349884.3	6996225.7	1398.34	Outcrop-select	Vein	10	12	Е	Vein	11	77.2	3470
Partin	D397513	349798.9	6996144.0	1346.11	Outcrop-chip					Breccia	0.169	1.3	922
Partin	D397514	349883.1	6996015.9	1353.30	Outcrop-select	Vein	7	22	Е	Vein	6.82	414	8430
Partin	D397515	349877.3	6996013.1	1354.00	Outcrop-select	Vein	7	22	Е	Vein	30.9	1500	13650
Partin	D397516	349876.4	6996013.1	1354.03	Outcrop-select	Vein				Vein	0.128	9.01	698
Partin	D397517	350068.5	6996131.3	1513.97	Subcrop-Select	Vein				Vein	11.15	21.5	831
Partin	D397518	350052.5	6996132.8	1514.05	Float-Select	vein				Vein	22.9	95.3	3500
Partin	D397519	350051.2	6996113.9	1510.01	Subcrop-Select	vein				Vein	7.17	16.75	1035
Partin	D397520	349988.9	6996009.2	1427.90	OC-select	Skarn				Skarn	0.145	0.97	1070
Partin	D397521	349918.6	6995903.9	1347.40	Outcrop-chip	Skarn				Skarn	1.265	0.72	729
Partin	D397522	349913.8	6995888.3	1342.22	Outcrop-chip	Skarn				Skarn	0.642	0.49	498
Partin	D397523	349904.4	6995912.8	1347.44	Outcrop-Chip	Skarn				Skarn	0.666	0.51	514
Partin	D397524	350082.8	6996847.3	1488.98	Outcrop-chip	vein	85	44	S	Skarn	0.311	0.28	268
Partin	D397525	350081.4	6996826.6	1505.83	Outcrop-chip	vein	20	41	SE	Vein	10.05	69.5	4540
Partin	D397526	350083.1	6996816.6	1507.82	Outcrop-chip	vein/skarn	102	90		Vein	17.1	39.9	17050
Partin	D397527	350081.4	6996818.7	1506.85	Outcrop-chip	vein/skarn				Skarn	12	30	13100
Partin	D397528	350079.5	6996817.2	1504.91	Outcrop-select	vein	44	24	SE	Vein	28.7	304	26200
Partin	D397529	350077.2	6996815.2	1503.48	Outcrop-chip	skarn				Skarn	8.99	12.35	14000
SW Partin	D397530	348509.0	6994760.5	1622.44	Subcrop-composite					Vein	0.054	0.56	174.5
SW Partin	D397531	348990.0	6994131.8	1373.29	float					Breccia	0.018	0.14	116.5
SW Partin	D397532	348998.4	6994132.5	1372.17	float					Breccia	0.009	0.11	151
SW Partin	D397533	349018.1	6994106.2	1367.93	float					Breccia	0.008	0.2	191
SW Partin	D397534	349028.2	6994086.3	1370.61	float					Breccia	0.007	0.07	12.7
SW Partin	D397535	349079.4	6994077.5	1363.76	float					Breccia	<0.005	0.06	99.2
SW Partin	D397536	349080.6	6994108.0	1365.39	float					Breccia	<0.005	0.07	35.8
SW Partin	D397537	349045.8	6994079.9	1368.36	float					Breccia	0.021	0.09	66
Kubek	D397551	351943.0	6985343.0		Float					Argillite	0.024	1.26	343
Kubek	D397552	352085.4	6985413.5	587.57	Outcrop-chip					Dike	0.022	0.49	62.3
Kubek	D397553	352070.9	6985420.6	572.98	Float					Argillite	0.017	0.5	24.5
Kubek	D397554	352097.6	6985432.2	594.41	Outcrop-chip		280	55	Ν	Gabbro	0.012	0.42	32.2
Kubek	D397555	352100.0	6985432.0		Outcrop-chip					Argillite	0.02	0.73	62.2
Kubek	D397556	351987.6	6985380.6	547.07	Float					Argillite	0.024	0.57	40.3
										-			

Partin West	D397557	651543.0	6995667.0	1340.69	Float					Breccia	0.012	0.02	7.8
Partin	D397558	350346.6	6996422.8	1635.85	Subcrop-composite		225	?	NW	Dike	0.566	1.86	2790
Partin	D397559	350350.0	6996420.5	1635.98	Subcrop-composite	Sill				Dike	0.012	0.22	17.3
Partin	D397560	350338.3	6996438.8	1641.02	Outcrop-chip					Marble	0.076	1.45	1110
Partin	D397561	350335.3	6996441.8	1641.50	Subcrop-composite					Marble	0.06	0.42	449
Partin	D397562	350336.2	6996444.2	1643.81	Subcrop-composite		225	?	NW	Marble	0.47	1.01	233
Partin	D397563	350345.0	6996362.9	1637.59	float-select	Vein				Vein	17.65	44.2	2930
Partin	D397564	350318.3	6996337.6	1630.83	subcrop select	Vein	10	?	SE	Vein	22.4	123	8570
Partin	D397565	350339.0	6996346.2	1630.57	Subcrop-composite	Sill				Dike	0.191	0.84	64.4
Partin	D397566	350293.6	6996299.2	1628.04	Subcrop-Select	Vein	10	?	SE	Vein	20.1	384	14700
Partin	D397567	350255.6	6996250.7	1622.47	Subcrop-Select	Vein				Vein	16.75	38.7	15850
Partin	D397568	350251.8	6996249.5	1621.12	Subcrop-Select	Vein				Vein	8.61	25.6	737
Partin	D397569	350233.4	6996235.0	1614.72	Subcrop-select	Vein-Contact	?			Vein	5.34	13.5	226
Partin	D397570	350466.2	6996456.4	1538.20	float-select	vein				Vein	1.135	9.33	1740
Partin	D397571	350452.3	6996398.7	1542.02	float-select	vein				Vein	1.925	12.35	3390
Partin	D397572	350422.0	6996339.2	1560.24	Outcrop-chip	skarn				Skarn	0.043	0.72	3920
Partin	D397573	350417.0	6996335.5	1564.15	Outcrop-chip	skarn	210	49	NW	Skarn	0.038	0.42	245
Partin	D397574	350403.8	6996326.0	1576.90	Outcrop-chip	Skarn				Skarn	0.047	0.85	4640
Partin	D397575	350382.7	6996302.6	1579.06	Outcrop-chip	Skarn	120	sub-vertical		Skarn	3.91	46.5	9130
Partin	D397576	350368.1	6996319.1	1595.06	Outcrop-chip	skarn	120	sub-vertical		Skarn	0.081	5.83	7070
Partin	D397577	350374.2	6996315.7	1593.15	Outcrop-chip	Skarn	120	sub-vertical		Skarn	0.102	6.53	6700
Partin	D397578	350373.8	6996317.5	1589.60	Outcrop-chip	Skarn	120	sub-vertical		Skarn	0.015	0.07	52.9
Partin	D397579	350368.1	6996318.9	1597.04	Outcrop-select	Vein				Vein	2.2	2.59	1290
Partin	D397580	350359.8	6996322.3	1600.76	Outcrop-chip	Skarn				Skarn	0.053	0.98	2420
Partin	D397581	350343.2	6996330.1	1616.99	Outcrop-chip	Skarn				Skarn	0.093	2.53	7670
Partin	D397582	350321.9	6996324.6	1623.44	Subcrop -select	Vein				Vein	20.2	477	14900
Partin	D397583	350305.5	6996291.8	1614.70	Outcrop-chip					Basalt	5.17	5.96	720
Partin	D397584	350261.4	6996256.9	1623.66	Subcrop-select	vein				Vein	0.046	0.88	1635
Partin	D397585	350176.4	6996181.6	1591.10	subcrop-select	vein				Vein	4.66	67.1	2510
Partin	D397586	350155.1	6996168.4	1585.53	Subcrop-Select	vein				Vein	5.55	49.7	7510
Partin	D397587	350151.5	6996164.2	1583.18	subcrop-select	vein				Vein	3.14	36.8	5310
Partin	D397588	350145.1	6996166.1	1580.66	float-select	vein				Vein	7.9	262	7620
Partin	D397589	350106.4	6996162.3	1561.43	Subcrop-Select	breccia				Breccia	0.166	9.43	726
Kubek	D397590	351971.3	6985299.8	552.52	float-composite					Argillite	0.043	1.76	25
Kubek	D397591	351969.4	6985296.1	553.42	float-composite	breccia				Breccia	0.016	0.77	48.4
Kubek	D397592	351980.7	6985371.5	546.78	float-grab					Argillite	0.031	1.85	196.5
Partin	D397593	350185.8	6996158.8	1578.30	subcrop-select	vein				Vein	9.71	139	3640
Partin	D397594	350155.8	6996118.1	1554.75	Outcrop-chip		214	71	NW	Skarn	0.045	0.95	63.4
Partin	D397595	350153.5	6996092.3	1539.69	Float-select	vein				Vein	8.59	190	7540
Partin	D397596	350171.7	6996054.1	1515.28	Outcrop-chip					Skarn	0.138	0.83	1160
Partin	D397597	350174.0	6996050.4	1518.10	OC-select	vein	220	80	NW	Vein	7.99	78.2	897
Partin	D397598	350202.0	6996069.5	1499.58	Float-select	vein				Vein	5.59	25.3	3620
Partin	D397599	350224.9	6996061.1	1495.73	Outcrop-select	skarn	215	69	NW	Skarn	2.55	3.43	768
Partin	D397600	350223.8	6996047.1	1487.85	Outcrop-chip					Dike	0.035	0.25	474

Partin	D397601	349750.4	6996528.1	1465.12	Outcrop-chip	Contact	220	70	NW	Skarn	0.052	0.36	524
Partin	D397602	349751.0	6996528.1	1465.12	Outcrop-chip	Contact	220	70	NW	Basalt	0.034	0.23	601
Partin	D397603	349753.6	6996529.5	1464.60	Outcrop-chip					Skarn	0.105	1.71	3540
Partin	D397604	349754.8	6996531.4	1467.00	Outcrop-chip					Skarn	0.042	3.14	4870
Partin	D397605	349761.0	6996535.5	1477.07	Outcrop-chip					Skarn	0.032	1	2520
Partin	D397606	349759.6	6996530.2	1480.23	Outcrop-chip					Skarn	0.076	1.5	4680
Partin	D397607	349744.7	6996520.5	1469.78	Outcrop-chip	Dike	235	90		Dike	0.083	0.14	141
Partin	D397608	349740.5	6996524.3	1464.45	Outcrop-chip		240	65	NW	Skarn	0.052	1.2	3710
Partin	D397609	349735.7	6996521.1	1459.00	Outcrop-chip					Skarn	0.058	1.3	3000
Partin	D397610	349728.2	6996511.8	1448.86	Outcrop-chip					Vein	2.11	22.6	4540
Partin	D397611	349735.0	6996506.1	1453.14	Outcrop-chip					Skarn	0.05	0.64	1515
Partin	D397612	349742.9	6996511.0	1458.72	Outcrop-chip					Skarn	0.042	0.92	1875
Partin	D397613	349731.0	6996501.0	1444.53	Outcrop-chip		235	60	N	Skarn	11.85	99	26300
Partin	D397614	349732.0	6996500.0	1444.53	Outcrop-chip					Skarn	0.073	0.69	620
Partin	D397615	349731.5	6996501.0	1444.53	Outcrop-chip					Vein	2.65	40.1	12250
Partin	D397616	349728.1	6996500.8	1440.89	Select		315	25	N	Vein	0.717	34.5	2160
Partin	D397617	349718.7	6996495.6	1433.02	Outcrop-chip					Skarn	0.062	1.45	3980
Partin	D397618	349705.7	6996492.8	1422.04	Outcrop-chip					Skarn	0.078	2.69	5220
Partin	D397619	349698.1	6996488.2	1415.87	Outcrop-chip					Skarn	0.14	5.56	5640
Partin	D397620	349652.4	6996464.3	1377.97	Outcrop-chip					Skarn	3.99	2.78	2920
Partin	D397621	349638.3	6996463.7	1371.21	Outcrop-chip					Basalt	0.063	1.74	1660
Partin	D397622	349554.0	6996507.3	1343.60	Outcrop-chip					Skarn	0.074	1.33	2550
Partin	D397623	349546.8	6996506.7	1339.27	Outcrop-chip					Basalt	0.019	0.43	375
Partin	D397624	349801.3	6996481.1	1472.48	Outcrop-chip		230	75	NW	Dike	0.038	0.22	118.5
Partin	D397625	349795.5	6996495.6	1470.59	Outcrop-chip					Gossan	0.096	1.1	1765
Partin	D397626	349796.0	6996495.6	1470.59	Outcrop-chip					Skarn	0.016	0.47	569
Partin	D397627	349795.5	6996497.0	1470.59	Outcrop-chip					Skarn	0.056	0.14	137
Partin	D397628	349784.5	6996487.6	1461.24	Outcrop-chip					Skarn	0.087	3.48	8280
Partin	D397629	349786.0	6996487.6	1461.24	Outcrop-chip		215	40	NW	Vein	0.64	9	5440
Partin	D397630	349771.9	6996467.6	1448.94	Outcrop-chip					Skarn	0.124	3.31	10300
Partin	D397631	349767.0	6996462.4	1445.32	Outcrop-chip					Skarn	0.175	2.65	8420
Partin	D397632	349762.6	6996460.1	1441.32	Outcrop-chip		230	70	NW	Vein	1.385	21.4	1205
Partin	D397633	349763.0	6996460.1	1441.32	Outcrop-chip					Vein	0.308	22.6	211000
Partin	D397634	349763.5	6996460.1	1441.32	Outcrop-chip					Vein	5.16	344	12200
Partin	D397635	349762.6	6996460.5	1441.32	Outcrop-chip					Vein	1.49	43.6	4980
Partin	D397636	349762.6	6996461.0	1441.32	Outcrop-chip		50	40	E	Vein	8.16	75.4	4570
Partin	D397637	349762.4	6996477.9	1450.65	Outcrop-chip		310	20	Ν	Vein	0.099	1.42	215
Partin	D397638	349759.6	6996455.2	1440.82	Outcrop-chip					Vein	2.34	4.1	275
Partin	D397639	349760.2	6996455.2	1440.82	Outcrop-chip		345	35	Е	Vein	4.09	20	2070
Partin	D397640	349759.6	6996456.0	1440.82	Outcrop-chip					Vein	2.43	144	18300
Partin	D397641	349759.6	6996456.5	1440.82	Outcrop-chip		0	30	Е	Vein	1.635	39.3	2170
Partin	D397642	349759.1	6996447.6	1440.30	Outcrop-chip					Vein	9.01	67.2	5110
Partin	D397643	349761.4	6996444.9	1436.91	Outcrop-chip		345	10	Е	Vein	0.522	1.02	939
Partin	D397644	349777.0	6996434.7	1430.71	Outcrop-chip					Vein	11.55	96.7	10600

Partin	D397645	349777.5	6996434.7	1430.71	Outcrop-chip					Vein	7.01	60.4	8490
Partin	D397646	349242.2	6996115.4	1167.32	Outcrop-chip					Marble	0.143	12.3	8530
Partin	D397647	349270.0	6995824.5	1103.96	Outcrop-chip	1	110	70	SW	Basalt	0.077	1.21	1240
Kubek	D397648	351866.8	6985296.8	548.91	Float					Chert	0.013	0.18	81.5
Kubek	D397649	351898.7	6985409.2	557.08	Float					Chert	0.015	0.54	109
Partin	D397650	350273.0	6996627.4	1701.48	Outcrop-chip					Basalt	0.533	0.84	613
Partin	D397651	350196.3	6996614.3	1666.26	Outcrop-chip					Basalt	1.06	10.2	1845
Partin	D397652	350071.1	6996583.6	1616.80	Subcrop					Vein	6.02	344	9170
Partin	D397653	349922.4	6996563.0	1585.00	Outcrop-chip					Skarn	0.147	1.74	3360
Partin	D397654	349840.5	6996341.0	1442.42	Subcrop					Skarn	1.555	10.65	10400
Partin	D397655	349840.5	6996341.5	1442.42	Subcrop					Skarn	0.248	3.98	8200
Partin	D397656	350073.4	6995841.0	1319.91	Outcrop-chip					Skarn	2.67	2.09	1635
Partin	D397657	350071.8	6995845.7	1318.27	Outcrop-chip	2	240	70	Ν	Skarn	2.07	9.19	7390
Partin	D397658	350080.7	6995841.0	1319.44	Outcrop-chip	2	270	55	Ν	Vein	1.335	5.26	1395
Partin	D397659	350078.0	6995834.0	1311.45	Outcrop-chip						0.099	0.92	1520
Partin	D397660	350078.6	6995829.5	1309.59	Outcrop-chip						0.098	0.9	1580
Partin	D397661	350041.3	6995810.1	1306.41	Outcrop-chip						0.912	4.55	4700
Partin	D397662	350318.4	6996246.1	1585.59	Outcrop-chip						0.028	1.41	937
Partin	D397663	350321.2	6996273.8	1593.85	Outcrop-chip						2.63	218	13800
Partin	D397664	350327.5	6996270.3	1590.85	Outcrop-chip	1	115	75	S		0.977	63.6	4630
Partin	D397665	349375.1	6996307.8	1215.48	Outcrop-chip						73.9	26.7	2750
Partin	D397666	349344.8	6996295.4	1196.64	Outcrop-chip	3	315	30	Ν		6.86	244	12900
SW Partin	D397667	349080.2	6994199.2	1383.30	Float						0.147	1.02	6240
SW Partin	D397668	348467.6	6994755.4	1622.17	Outcrop-chip						0.016	0.41	127.5
SW Partin	D397669	348432.7	6994650.9	1558.82	Outcrop-chip						0.023	0.07	86.5
SW Partin	D397670	348997.7	6994138.6	1371.01	Float						<0.005	0.08	91.9
SW Partin	D397671	348983.9	6994137.8	1371.13	Float						0.005	0.06	33.8
SW Partin	D397672	348962.2	6994142.6	1371.44	Float						<0.005	0.08	232
SW Partin	D397673	348944.1	6994144.2	1372.03	Float						<0.005	0.07	108.5
SW Partin	D397674	348934.3	6994126.3	1369.34	Float						<0.005	0.06	34.9
SW Partin	D397675	348955.3	6994090.3	1364.57	Float						0.01	0.16	90.3
SW Partin	D397676	349014.5	6994055.3	1360.63	Float						0.043	0.04	43.5
SW Partin	D397677	349008.0	6993965.9	1353.08	Float						0.007	0.24	93.6
SW Partin	D397678	349071.4	6993904.2	1345.89	Float						0.01	0.14	163
SW Partin	D397679	349133.3	6993985.4	1347.14	Float						<0.005	0.08	99.9
SW Partin	D397680	348997.0	6994138.0		Float						<0.005	0.02	8

Prospect	Sample_ID	UTM_E	UTM_N	Elev (m)	Au_ppm	Ag_ppm	Cu_ppm	Description
Partin	D398003	350512.12	6996588.28	1555.40	7.18	12.25	3110	Talus ≈ 5 meters wide; SE facing beneath Partin Ridge; Light brown talus fines
Partin	D398004	350470.49	6996563.20	1568.13	2.01	3.81	1270	Talus ≈ 20 meters wide; SE facing beneath Partin Ridge; Light brown talus fines; Float with mineralization (Pyrrhotite, Chalcopyrite, Pyrite)
Partin	D398002	350593.71	6996611.74	1569.77	1.325	3.92	924	Talus ≈ 25 meters wide; SE facing beneath Partin Ridge; Light to dark brown talus fines
Partin	D398006	350472.12	6996477.89	1541.84	1.055	1.67	729	Talus ≈ 40 meters wide; SE facing beneath Partin Ridge; Light brown talus fines
Partin	D398001	350283.99	6995807.00	1324.93	0.718	1.81	965	Talus ≈ 5 meters wide; South facing beneath Partin Ridge; Light brown talus fines
SW Partin	D398103	348469.33	6994661.62	1547.82	0.704	0.3	320	Talus Fines. Lt brn on side of steep slope
Partin	D398018	350336.93	6995915.69	1354.98	0.699	3.28	1490	Talus ≈ 60 meters wide; S facing beneath Partin Ridge; Brown talus fines; organic rich soil
Partin	D398011	350474.98	6996235.76	1487.55	0.671	6.92	2180	Talus ≈ 35 meters wide; SSE facing beneath Partin Ridge; Light brown talus fines; Limestone, skarn, w/ copper staining
Partin	D398007	350461.98	6996438.08	1541.96	0.64	2.36	886	Talus ≈ 40 meters wide; SE facing beneath Partin Ridge; Light brown talus fines; Float with mineralization (Pyrrhotite)
Partin	D398005	350454.00	6996515.09	1555.61	0.598	2.29	479	Talus ≈ 10 meters wide; SE facing beneath Partin Ridge; Light brown talus fines; oxidized vein in limestone above dipping ≈ 35°
Partin	D398019	350289.67	6995889.53	1360.94	0.539	4.54	882	Talus ≈ 15 meters wide; S facing beneath Partin Ridge; Brown talus fines
Partin	D398015	350398.75	6996047.72	1422.65	0.529	2.83	935	Talus ≈ 6 meters wide; S facing beneath Partin Ridge; Brown talus fines; organic rich soil; copper staining
Partin	D398014	350382.83	6996082.26	1450.31	0.485	7.93	1310	Talus ≈ 5 meters wide; S facing beneath Partin Ridge; Brown talus fines.
Partin	D398020	350282.39	6995855.84	1347.82	0.431	2.82	1620	Talus ≈ 7 meters wide; S facing beneath Partin Ridge; Light brown talus fines.
Partin	D398012	350449.15	6996175.04	1471.24	0.414	3.34	1290	Talus ≈ 15 meters wide; SSE facing beneath Partin Ridge; Light to dark brown talus fines; Mafic rocks; some mineralization (Chalcopyrite, Pyrite)
Partin	D398013	350424.51	6996117.93	1457.75	0.338	2.26	1210	Talus ≈ 30 meters wide; S facing beneath Partin Ridge; Light brown to orange talus fines
Partin	D398008	350475.20	6996367.85	1521.10	0.313	1.67	621	Talus ≈ 27 meters wide; SE facing beneath Partin Ridge; Light brown talus fines, sands, silts; Beneath limestone and basalt
Partin	D398017	350368.86	6995937.41	1349.97	0.243	1.06	573	Talus ≈ 35 meters wide; S facing beneath Partin Ridge; Brown talus fines; organic rich soil
Partin	D398009	350483.68	6996326.74	1508.37	0.203	1.58	715	Talus ≈ 20 meters wide; SE facing beneath Partin Ridge; Light brown talus fines; Light mineralization
Partin	D398033	348631.72	6993770.86	1391.25	0.186	1.50	317	Shale; Light to med. Brown talus fines; oxidation
Partin	D398016	350397.16	6995982.63	1377.05	0.100	0.59	937	Talus ≈ 12 meters wide; S facing beneath Partin Ridge; Brown/Gray talus fines; organic rich soil
Partin	D398010	350483.18	6996290.72	1500.65	0.140	1.14	433	Talus \approx 25 meters wide; SE facing beneath Partin Ridge; Light brown talus fines; Oxidized rocks; beneath Basalt; small mineralization (Pyrrhotite)
SW Partin	D398058	348243.82	6993390.99	1455.14	0.087	0.36	140	Steep 40 m talus fan; light brown talus fines
SW Partin	D398038	348358.89	6993458.91	1455.14	0.075	0.30	140	Shale; Dark brown/Gray talus fines; Talus fan ≈ 60 meters wide
SW Partin	D398075	348587.47	6993530.25	1378.31	0.064	0.34	133	Mostly shale; Dark brown talus fines; Talus fine ≈ 80 meters wide
SW Partin	D398009	348594.60	6993732.08	1398.07	0.004	0.35	133	Steep 60 m talus fan; dark brown talus fines
SW Partin	D398052	348506.04	6993478.60	1390.60	0.05	0.37	125.5	Dark brown talus fines; Talus fan ≈ 70 meters wide; mafic outcrop above
SW Partin	D398068	348300.04	6993472.25	1390.00	0.03	0.37	123.5	Semi-steep talus slope; light brown talus fines; organic rich
SW Partin	D398002 D398101	348419.42	6994640.29	1541.61	0.049	0.39	434	Talus Fines. Lt brn TF near base of qtz-chalc vn bx cliffs
Partin	D398101 D398031	348718.70	6993915.97	1341.01	0.048	0.98	434 259	Shales & limestones; Dark brown talus fines; Large talus fan ≈ 80 meters wide
Partin	D398031 D398035	348718.70	6993406.86	1382.90 1474.78	0.044	0.89	158.5	Talus fan \approx 80 meters wide; Shale, skarn, limestone; Light to dark brown talus fines
Partin	D398033 D398023	348237.03	6993406.86 6994323.38	1387.26	0.042	0.54	415	Light to dark brown talus fines; organic rich
	D398025 D398059	348944.90 348274.77	6994323.38 6993419.22	1387.28	0.04	0.84	415 172	Steep 30 m talus fan; SW Partin; light brown talus fines
SW Partin								
SW Partin	D398153	348396.88	6994477.67	1564.05	0.035	0.31	201	Talus Fines. Altered BA/Chalcedony BX. Porph BA, Vesicular BA-Black Slate
Partin	D398022	348959.51	6994333.64	1390.13	0.033	0.91	577	Dark brown organic rich talus fines; Skarn and basalt (vesicular/porous) overgrown talus
SW Partin	D398053	348089.20	6993190.25	1375.91	0.033	0.56	116	Steep 20 m talus fan; SW Partin; brown/gray talus fines; some oxidation
SW Partin	D398104	348504.07	6994660.78	1540.33	0.032	0.48	230	Talus Fines. Lt brn on side of steep slope
SW Partin	D398051	348642.49	6993796.69	1388.87	0.032	0.33	147.5	Semi-steep 4 m talus fan; SW Partin; brown talus fines; some oxidation
SW Partin	D398152	348395.35	6994570.57	1547.95	0.031	0.38	56.3	Talus Fines. Altered BA, Porph BA, Limestone with CC veins
SW Partin	D398102	348439.36	6994649.86	1554.93	0.029	0.47	297	Talus Fines. Lt brn TF near base of qtz-chalc vn bx cliffs
Partin	D398040	348121.79	6993226.32	1501.27	0.025	0.49	110.5	Dark brown talus fines; Shales & Limestone; Talus fan ≈ 8 - 10meters
Partin	D398039	348232.22	6993363.97	1477.42	0.024	0.22	135.5	Talus fan \approx 100 meters wide; shale & limestone outcrop above; Dark brown talus fines; some oxidation
SW Partin	D398070	348420.43	6993453.47	1417.05	0.024	0.43	120	Talus fan ≈ 50 meters wide; Shale w/ some oxidation; organic rich
SW Partin	D398109	348877.37	6994554.46	1492.04	0.023	1.22	473	Talus Fines. At head of large talus fan near basalt. Mix of LS and bslt float
SW Partin	D398110	348949.65	6994491.74	1476.62	0.023	0.5	284	Talus Fines. Lt brn-orange large steep talus slope abundant fe-carb altd LS in float
SW Partin	D398076	348299.40	6993425.99	1465.64	0.023	0.3	129	Dark brown/Gray talus fines; Shale w/ outcrop above; Talus fan ≈ 80 meters wide
SW Partin	D398054	348126.45	6993244.74	1393.51	0.023	0.43	110	Semi-steep 10 m talus fan; brown talus fines
Partin	D398036	348137.74	6993261.95	1506.67	0.022	0.3	198	Dark brown talus fines; Shales & Skarn; Talus fan ≈ 7 meters wide
SW Partin	D398108	348786.60	6994599.41	1492.89	0.021	0.59	630	Talus Fines. From small fan below bslt cliffs. Near contact between marble and bslt with minor skarn
SW Partin	D398042	349053.56	6994418.85	1448.22	0.021	0.54	322	Steep 10 m talus fan; light brown talus fines

Partin	D398021	348985.58	6994341.12	1379.13	0.021	2.1	310	Light brown talus; Small talus, mostly outcrop/subcrop; minimal quartz veins
Partin	D398038	348191.14	6993313.00	1492.33	0.021	0.39	282	Skarns & Limestone possibly; oxidation, low mineralization; Talus fan $pprox$ 20 meters wide; Dark brown/Gray talus fines
SW Partin	D398057	348205.68	6993328.28	1452.61	0.021	0.8	239	Steep 20 m talus fan; light brown / gray talus fines
SW Partin	D398041	349017.63	6994333.38	1406.51	0.02	0.47	195.5	Steep 5 m talus fan; light brown talus fines
Partin	D398026	348845.26	6994303.02	1414.95	0.02	0.47	179.5	Dark brown talus fines; talus fan ≈ 5 meters wide; organic rich; skarns & basalts
SW Partin	D398157	348546.18	6994190.33	1498.92	0.018	0.34	377	Mixed talus fine sample. To here, steep cliffs of Limestone & epidote-propylitic altered basalt. Here Purple weathered limestone & visible BA outcrop high up in cliffs.
SW Partin	D398046	349238.69	6994209.42	1372.66	0.018	0.77	189.5	Steep 20 m talus fan; brown talus fines
SW Partin	D398106	348615.58	6994656.69	1528.59	0.017	0.2	490	Talus Fines. Dk brn near chloritic bslt OC, steep slope
SW Partin	D398156	348497.92	6994410.70	1530.19	0.016	0.22	301	Talus Fines. Friable black slate, Pyx Skarn, Limestone.
Partin	D398029	348779.29	6994288.13	1420.34	0.016	0.85	197.5	Light brown talus fines; mild oxidation; Limestone w/ little mineralization; Talus fan ≈ 10 meters wide; large quartz veins
SW Partin	D398111	349013.02	6994425.87	1451.57	0.016	0.31	113	Talus Fines. Lt brn-orange large steep talus slope abundant fe-carb altd LS in float
Partin	D398034	348606.98	6993698.82	1394.05	0.016	0.27	60.1	Shales w/ fossilized shells; Dark brown talus fines; Organic Rich
Partin	D398024	348914.79	6994317.19	1395.33	0.015	0.39	511	Dark igneous basalts possibly skarns as well; Dark brown/Gray talus fines; coarse soils; talus fan ≈ 90 - 100 meters
SW Partin	D398061	348390.33	6993478.08	1444.22	0.015	0.32	143.5	Steep 40 m talus fan; light brown talus fines
SW Partin	D398050	348706.38	6993900.48	1385.81	0.014	0.43	270	Semi-steep 10 m talus fan; brown talus fines
SW Partin	D398107	348654.41	6994624.87	1511.59	0.013	0.15	621	Talus Fines. Brn moist TF near base of amygdaloidal bslt
SW Partin	D398045	349210.67	6994240.62	1379.10	0.013	0.68	124.5	Steep 5 m talus fan; gray talus fines
SW Partin	D398047	349269.03	6994157.14	1358.64	0.013	0.34	122	Steep 30 m talus fan; brown talus fines
Partin	D398027	348825.03	6994295.93	1420.54	0.013	0.38	85.9	light to dark brown talus fines; talus fan ≈ 7 meters wide; Quartz veining in mafic rock
SW Partin	D398151	348403.78	6994605.77	1541.57	0.013	0.2	76.6	Talus Fines. Feldspar Rich Basalt_Porphyritic Basalt. Dk Brwon Clay Rich Talus fines
Partin	D398025	348870.82	6994292.91	1396.25	0.012	0.2	246	Dark brown talus fines; organic rich; talus fan ≈ 5 meters wide
Partin	D398030	348771.72	6994276.78	1419.42	0.012	0.66	207	Dark brown talus fines; Limestone w/ light mineralization; Talus fan ≈ 10 meters wide
SW Partin	D398049	348735.23	6993935.84	1376.73	0.012	0.41	160.5	Semi-steep 15 m talus fan; brown talus fines
SW Partin	D398060	348318.39	6993445.41	1455.10	0.012	0.28	118	Steep 80 m talus fan; light brown talus fines
SW Partin	D398055	348155.43	6993272.95	1418.86	0.012	0.36	89.9	Steep 7 m talus fan; brown/gray talus fines
SW Partin	D398105	348563.84	6994656.77	1529.54	0.011	0.25	132.5	Talus Fines. Dk brn near chloritic bslt OC, steep slope
SW Partin	D398044	349147.14	6994296.91	1399.82	0.011	0.22	89	Steep 30 m talus fan; light brown talus fines
SW Partin	D398155	348449.74	6994418.86	1553.72	0.01	0.26	361	Talus Fines. Fg Basalt, Limestone, Porph BA
Partin	D398032	348690.26	6993866.42	1393.10	0.01	0.14	263	Shales/ Limestones; Talus fan $pprox$ 20 meters wide; Dark brown/ Gray talus fines
SW Partin	D398158	348555.45	6994345.65	1487.40	0.01	0.23	224	Talus Fines. Ba, Ba agglomerate. Carb-epi veins, propylitic alteration.
SW Partin	D398043	349101.06	6994381.95	1438.51	0.01	0.53	138.5	Steep 15 m talust fan; light brown talus fines
Partin	D398037	348166.38	6993288.39	1495.18	0.01	0.37	78.3	Dark brown talus fines; Shale & Limestone
SW Partin	D398048	348752.81	6994250.32	1412.05	0.009	0.35	75.1	Steep 5 m talus fan; brown talus fines
Partin	D398028	348793.41	6994294.51	1426.48	0.008	0.51	120.5	dark brown/ gray talus fines; talus fan ≈ 4 meters wide
SW Partin	D398154	348404.97	6994440.36	1571.42	0.008	0.15	98.5	Talus Fines. Black BA, Fossil Rich limestone and Bio-Diorite.
SW Partin	D398056	348175.00	6993297.24	1445.39	No Result	No Result	No Result	t EMPTY BAG. Semi-steep 15 m talus fan; light brown talus fines, (Bag open and empty upon arrival at lab)

ENDS

This announcement has been authorised by the Board of Directors of Discovery Africa Limited.

For further information:

Jerko Zuvela, Director

T | +61 8 6165 4000

E | jerko@discoveryafrica.com.au

W www.discoveryafrica.com.au

Competent Person's Statement

The information contained in this ASX release relating to Exploration Results has been prepared by Mr Jerko Zuvela. Mr Zuvela is a Member of the Australasian Institute of Mining and Metallurgy, and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Zuvela is a Director of Discovery Africa Ltd and consents to the inclusion in this announcement of this information in the form and context in which it appears. The information in this announcement is an accurate representation of the available data from the Chulitna Project.

The 2021 Chulitna Project exploration program includes a Quality Control/Quality Assurance (QA/QC) program overseen by Jesse C. Grady, MSc, CPG-11592. Mr Grady is a Qualified Person as defined by NI 43-101. Mr Grady has prepared and approved the technical information contained within this announcement.

Forward Looking Statements: Statements regarding plans with respect to the Company's mineral properties are forward looking statements. There can be no assurance that the Company's plans for development of its mineral properties will proceed as expected. There can be no assurance that the Company will be able to confirm the presence of mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of the Company's mineral properties.

ABOUT DISCOVERY AFRICA LIMITED

Discovery Africa Limited (ASX: DAF) is an Australian company with a 100% interest in the Chulitna Project in Alaska, USA.

The Company has an experienced board and management team with a history of exploration, operational and corporate success.

DAF leverages the team's energy, technical and commercial acumen to execute the Company's mission - to maximize shareholder value through development of our assets.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 No drilling completed. Targeted rock sampling and talus fines sampling. Samples are mostly composite grabs or chips across structures from solid outcrop or rubble crops along ridge crests.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No Drilling conducted.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No drilling conducted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Basic geological description was done to describe sampled material and where possible, intersection metrics, including thickness, orientation, etc. Logging was qualitative in nature, with some quantitative aspects,

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	including interpreted mineralised thickness +/- orientation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No sub-sampling conducted. Sampling was made representative by ensuring that a competent geologist was on-site during the sampling works. The sample size was up to standard requirement for laboratory analysis requirements.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All analytical geochemistry of rock and talus samples collected have been reviewed for quality assurance and quality control. At this time no significant sample preparatory or analytical problem has been found and ALS Labs has performed well and within expected tolerances. All samples were submitted to ALS labs Fairbanks, Alaska prep lab with subsequent analysis at ALS labs Reno, Nevada or Vancouver, BC facility. All rock samples were submitted to ALS utilizing prep code PREP-31BY (Boyd crusher and rotary splitter; 1kg pulverized split), whereas talus fines samples utilized PREP-41 (screened to -180um). All samples were analyzed for gold using AA-24 (50g fire assay) and multi-elements by ME-MS61m (four acid digestion; ICP-MS; ICP-AES). Overlimits for gold that exceeded >10.0ppm were finished utilizing a gravimetric finish (Au-GRA22)
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 To date, all validation of sampling procedures are internal and no independent consultant has been engaged for sign-off. Internal checks have involved the consultant geologist conducting first pass mapping and sampling, and this has been validated by senior consultant geologist before reporting. Data collection, inputting and storage, backup, and verification are being adhered to and followed.
Location of	Accuracy and quality of surveys used to locate drill holes (collar and	Hand held GPS data were used for recording coordinates of all

Criteria	JORC Code explanation	Commentary
data points	 down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	sample locations.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data not for use in resource estimation nor used to determine grade continuity.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	No drilling conducted.
Sample security	The measures taken to ensure sample security.	 Sample security has been at high level and all samples were transported to the lab with security provisions in place.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits conducted. To date, all review of sampling procedures are internal and no independent consultant has been engaged for sign-off. Work carried out by consultants Yukuskokon Professional Services, LLC.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Discovery Africa's 100% owned Chulitna Project tenements are located within the Chulitna Region of the South Central Alaskan Range, Alaska. The project area comprises 308 State mining claims (199.4km²) – which have been officially registered by the Alaska Department of Natural Resources, and are located on State of Alaska public lands, are not subject to any Native Title claims, native lands, or native claimant groups. The Project lies approximately 250km north of

Criteria	JORC Code explanation	Commentary
		 Anchorage and close to the major Parks Highway, which runs mostly parallel to the State owned Alaska railroad. There are no known impediments to maintain the licences and operate in the area. 308 State mining claims – ADL734566 (Chulitna 1) - ADL734873 (Chulitna 308).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 No known recent exploration works conducted at the Partin Creek prospect. Gold-silver-copper-arsenic skarns and veins at the Partin Creek prospect were discovered in the early 1900's and subsequently sampled to a very limited extent by government and industry workers. Ten (10) historic rock chip samples were taken by these workers along a steep south-facing spur ridge at Partin for about ~600 meters and returned scattered results. Most of the ten (10) historic rock chip samples ranged from 100ppb to 900ppb Au with a single rock chip value returning 63g/t Au. Base metal values from some of these samples returned up to 300g/t Ag; 0.7% Cu & 0.7% Sb, and collectively indicated the high grade potential of the Partin Creek prospect.
Geology	Deposit type, geological setting and style of mineralisation.	 The ~1.5 x 1.5km Partin Creek prospect occurs wholly within an Upper Triassic rock belt consisting of interlayered metabasalt, marble and minor fossiliferous limestone which collectively have been overprinted by regional mid-greenschist facies metamorphism. This rock belt extends along strike to the northeast of Partin Creek for over >20km within the Chulitna Region. Host rock cut by quartz-sulfide veins are altered to iron-carbonate and phyllic assemblages (quartz-sericite-pyrite) that overprint widespread minor propylitic minerals and are commonly extremely oxidized. Narrow halos occur in metabasalt whereas pyroxene-garnet skarns are altered along strike of vein intersections for many meters. Sulfide replacement bodies, where cross cut by quartz-sulfide veins results in structurally controlled gossans that contain much FeOx-MnOx-CuOx and are anomalous in precious and base metals. Alteration halos to veins and mineralized dikes exhibit a noticeable increase in disseminated and veinlet style sulfides (aspy-py-po-cpy) with elevated gold, silver and copper values.
Drill hole	• A summary of all information material to the understanding of the	Rock and talus fines samples only.

Criteria	JORC Code explanation	Commentary
Information	 exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Table of sample location details and assay results included in Appendix 1, in main body of announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Actual results reported with sample details in description. No data aggregation methods used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No holes drilled. Rock and talus fines samples only.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See main body of report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All relevant information and results reported.
Other substantive exploration	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and 	All relevant information and results reported.

Criteria	JORC Code explanation	Commentary
data	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The planned further work pertains to conducting works to prepare for surface drilling to follow up anomalous results achieved during this sampling program. See main body of report.